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Chapter 5

Hogel-Vector Encoding

Diffraction-specific fringe computation provides a foundation for the development of

two holographic encoding schemes. In this chapter and the next, hogel-vector encod-

ing and “fringelet encoding” are described and demonstrated. Both are capable of

achieving compression ratios of 16 and more, and both dramatically reduce the total

time required to generate holographic fringes. These encoding schemes are the fulfill-

ment of the most elusive goal of diffraction-specific computation.

Dif fraction-specific fringe computation is developed around the ideas of sampling. A

holographic pattern is represented by a sampling of its spectrum as a function of both

space and spatial frequency. The information content of such a sampled fringe pattern

is equal to the product of the number of hogels times the number of components in

each hogel vector. Therefore, the sample spacing in the two sampled dimensions (wh

in space and ∆f in spatial frequency) determine the information content of the sampled

fringe representation. To reduce the number of samples, the spectrum of each hogel is

sampled in larger frequency steps. This reduction in the total number of samples com-

prising the hogel-vector array provides a savings of bandwidth at the stages of compu-

tation before the hogel-vector array is converted to the final fringe pattern. The final

fringe pattern must have a minimum number of samples, as dictated by the physics of

diffraction. However, if the hogel-vector description of the fringe pattern contains

fewer samples, then the array of hogel vectors can be thought of as an encoded form of

the fringe pattern, one that is compressed in terms of information bandwidth.

It is important to compress the huge information content of a fringe pattern so that it

can be easily displayed, transmitted, or stored. In particular, because the Cheops

framebuffer system (used to drive the second generation MIT holovideo display) is

designed to read in data over a relatively low-bandwidth SCSI link, compression is
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central to avoiding this bottleneck. To understand the nature of a holographic encoding

scheme, fringe computation is next discussed in terms of communication systems.

Such a discussion helps to frame the issues of information content in the realm of elec-

tro-holographic imaging.

5.1 The Electro-Holographic Communication System

This section deals with the concepts of information coding in a communication sys-

tem. The communication system to be discussed - the electro-holographic display of 3-

D images - is one that converts 3-D digital data (the 3-D scene description) into holo-

graphic images. The information is converted from one format to another along the

way: hogel vectors, hogels, diffracted light, etc. The amount of information used to

represent each of these formats (the required channel capacity or bandwidth) changes,

though the amount of useful information never exceeds the amount contained in the

original 3-D data source. One of the primary purposes for the development of diffrac-

tion-specific computation is to minimize the bandwidth required to represent the holo-

graphic information. Only for the purpose of actually diffracting light must the

encoded fringe be converted to the less efficient, higher bandwidth fringe.

A typical communication system is diagramed in the succeeding figure. Data begins at

the source, and the goal is to reproduce the data at the destination as accurately as pos-

sible71. Noise is introduced in the channel. This model, adapted to apply to holovideo

computation and display, becomes a holographic communication system.
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In the general case of holovideo, the source is a description of the 3-D object scene to

be displayed. The encoder converts this information into fringes. The display system

acts as the channel, converting the fringe information into a holographic image. The

channel includes the intermediate storage of the fringes in a framebuffer, and any sig-

nal processing that occurs in the analog domain on the way to the display. The channel

must also include the propagation of the diffracted light to the viewing zone. The

decoder is essentially the stimulation of the human visual system (HVS). The destina-

tion is the brain of the viewer. When discussing holographic encoding schemes, the

encoder is the computational process that generates the encoded fringe representation,

and the channel includes the decoding process, which often contributes additional

noise to the overall system. An effective encoding scheme reduces the required band-

width (capacity) of the channel. Bandwidth compression allows for more rapid trans-

Source Encoder Channel Decoder Destination

noise

Typical Communication System

3-D Scene Computation
Data Processing,

HVS Brain
Description

Signal Processing,
Diffraction,
Display Function, etc.

Electro-Holographic Communication System

Quantization Noise, Encoding
Losses, Distortion, etc.
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mission (display) of holographic information, and allows for faster computation at the

source.

5.1.1 Information Symbols

In an information content analysis, it is necessary to define a set of information-bear-

ing symbols. Discrete samples of continuous signals are commonly used as the infor-

mation-bearing symbols71. The final fringe pattern that is used to diffract light in the

display system is measured in samples. In the current MIT holovideo display, the num-

ber of 8-bit samples is 36 M per fringe pattern. It is possible to compute a large num-

ber of different 36-MB fringe patterns to generate the same holographic image. For

example, because the acuity of the HVS is limited, every point or element in an image

can be moved by an imperceptible amount before computing the fringe pattern using

traditional interference-based methods. This can result in thousands of different fringe

patterns that produce essentially the same image. Clearly, the 36 Msamples are not

being put to full use in an information bearing sense: these samples are dedicated to

producing microscopic imperceptible differences in images. If an encoded format is to

represent this fringe pattern with a reduced number of symbols, then most of these 36

M samples must be culled from the fringe. This observation, however, gives no clue as

to how bandwidth reduction can be performed. This is one of the reasons that until

now no research has been done to develop a fringe description that allows for the

unique and therefore most information-efficient specification system.

Diffraction-specific computation uses a sampled spectrum to encode holographic

information. The encoding formats developed from diffraction-specific computation

are formulated by specifying the diffractive duty of each hogel only to a degree that

matches the requirements of a typical human visual system.

5.1.2 Information Entropy

The concept ofentropy is used as a measure of efficiency (versus redundancy) in an

encoding scheme. The entropy of the occurrence of a symbol is essentially a measure
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of its uncertainty and is a function of its probability�  of occurring71. Simply stated,

the entropy of a symbol is the useful information conveyed by the occurrence of a par-

ticular symbol. Each symbol has an entropy of

. (14)

The higher the entropy, the more information “valuable” a symbol is. (For practical

systems, 0≤ � ≤0.5.) An important axiom in information theory is that when multiple

symbols (different fringes) exist containing the same information (the same hogel vec-

tor component), the entropy in a symbol transmission underutilizes the channel capac-

ity71. To most efficiently use bandwidth (the number of samples), each symbol must

convey unique information.

Consider hogel vectors. There are a large number of fringe patterns that diffract light

from a particular hogel to a particular part of the imaged scene. The actual usable

information in any one of these possible fringes is the same, yet only a single hogel

vector component is required to convey the information that light is to diffract is this

manner. The components of hogel vectors are a more efficient set of coding symbol,

and have an entropy that is roughly ten times higher than the individual samples in a

traditionally computed fringe pattern.

Recall that hogel vectors, in representing the diffractive duties of a hogel, are related

directly to the spectrum of a hogel. Consider the number of different spatial frequen-

cies in a hogel. For Nh samples, this number is Nh. Although the spectrum has Nh sam-

ples for the magnitude and Nh for the phase, the real-valued fringe (physically, a real-

valued intensity) has a spectrum with even conjugate symmetry (i.e., S(f)=S*(-f)).

Therefore, the Nh samples describing spectral phase carry no useful information from

the point of view of the holographic system. The useful information content of a set of

spatial frequencies depends on the number of spatial frequencies that give rise to dis-

tinguishably different viewer stimuli. For example, a hogel containing Nh=1K discrete

spatial frequencies can diffract light in 1K different directions. However, the viewer is

capable of resolving only a fraction of these. In the development of the diffraction-spe-

entropy �− �

2
log=



Lucente: Diffraction-Specific Fringe Computation For Electro-Holography

82

cific method of computation (see SectionChapter 4) it is remarked that the compres-

sion ratio achievable in HPO holographic fringes should be ten or more without

destroying image quality. Therefore, to reduce bandwidth, efficient holographic encod-

ing schemes must discretize the spectrum in larger steps.

The focus of the remainder of this dissertation is on the two encoding schemes devel-

oped on top of diffraction-specific computation. The first - called “hogel-vector encod-

ing” - is based on undersampling the spectrum of hogels as represented by hogel

vectors. The second - called “fringelet encoding” - is also based on undersampling the

spectrum, but uses an encoding format that is a step closer to an actual fringe represen-

tation but using only a fraction of the number of samples.

5.2 Description of Hogel-Vector Encoding

The first type of holographic encoding is called “hogel-vector encoding” because it

essentially undersamples hogel vectors to reduce information content. The array of

hogel vectors is treated as the encoded fringe format. To achieve bandwidth compres-

sion, the hogel spectrum is discretized in larger steps. For larger spectral sampling,

fewer samples are required, increasing the compression ratio (CR). The decoding step

in hogel-vector decompression is the process of superposing basis fringes weighted by

the appropriate hogel-vector components to produce a decoded hogel (fringe). But

because hogel-vector encoding undersamples the spectrum, it must use a special set of

basis fringes. For a higher CR each basis fringe must represent a larger portion of the

hogel spectrum. Each basis fringe must be tailored to cover a proportionally larger

region of the spectrum. The decoded hogels each contain information about the entire

spectrum. The difference between these hogels and the ones generated without com-

pression (i.e., minimum spectral sampling) lies in the specificity and uncertainty in the

final spectrum.
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In hogel-vector encoding, a more coarsely sampled spectrum represented by a hogel

vector with fewer discrete components contains a less specific description of the

desired diffraction. Since a single component of a hogel vector includes all contribu-

tions within its enlarged region of the spectrum, information is lost: it is uncertain

from whence in the spectral range a unit of energy in a particular vector component

arose. However, from the point of view of the human visual system, the fully sampled

hogel-vector array contains redundant information about the hogel spectra. Therefore,

hogel-vector encoding eliminates redundancy in holographic fringes and injects a tol-

erable amount of ambiguity.

Stated in terms of the holographic communication system, the entropy contained in

each information-bearing symbol (hogel-vector component) is increased. For example,

a hogel vector that is not undersampled contains Nh components. Generally, each is

equally like to occur, making each symbol have a probability

(15)

of occurring and an entropy of

3-D Scene
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(16)

For Nh=512, the entropy per symbol is (1/512)x9 = 0.0176. If the spectrum is under-

sampled by a factor of CR=8, each symbol has a probability and entropy of

(17)

. (18)

For Nh=512, the entropy per symbol in this compressed case is (8/512)x6 = 0.0938.

The channel of the holographic communication system is used over 5 times more effi-

ciently in terms of usable information conveyed per symbol.

Hogel-vector encoding is somewhat similar to certain 2-D image encoding schemes

that divide the 2-D image into blocks. In particular, hogel-vector encoding is similar to

discrete cosine transform (DCT) encoding67. The important difference is that hogel-

vector decoding does not use constant frequency sinusoids as basis functions. The

basis fringes used to perform the hogel-vector decoding must utilize the whole spec-

trum available to the hogel. If the decoded fringe has gaps in its spectrum (as in the

following illustration) the dropouts severely degrade the image, producing a picket

fence of drop-outs across the viewing zone, giving the image the appearance of being

behind bars. Gaps in the spectrum do not fulfill the second step in sampling theory,

which requires that an appropriate low-passing be performed on the samples to

recover the continuous signal. In hogel-vector encoding, the decoding step performs

the proper low-pass filtering of the sampled spectrum by convolving each component

with the spectrum (rectangular for purposes of illustration) of the corresponding basis

fringe. A properly decoded fringe has a continuous spectrum (as in the following illus-

tration), and the desired spectrum is reproduced with only the added ambiguity as a

possible artifact.

entropy
1

Nh
− log2

1
Nh

( )=

� CR
Nh

=

entropy
CR
Nh

− log2
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.

5.3 Image Generation

The computation steps in hogel-vector encoding are the same as the hogel-vector gen-

eration described for (unencoded) diffraction-specific computation. The two-step com-

putation was implemented on the Onyx/Cheops computation platform. The hogel-

vector array was generated on the Onyx workstation. The hogel-vector array was

downloaded to the Cheops P2 card, where it was then decoded using the Splotch

Engine. The decoded 36-MB fringe pattern was subsequently loaded into the VRAM

of the Cheops output cards. (Due to concern for reliability, for some experiments the

hogel-vector decoding was performed on the Onyx, and the decoded fringes were

downloaded directly to the Cheops output cards. The computed fringes were identical,

byte-for-byte, to those computed using the Splotch engine.) For a CR of 1 (no encod-

ing), the hogel-vector array comprises 36 MB. For larger values of compression ratio,

this number is proportionally smaller: a CR=16 gives a 2.25-MB hogel-vector array.

Images generated using hogel-vector encoding showed an increase in imaged point

spread as a function of compression ratio (CR). In many cases, this point spread was

not perceivable. Hogel-vector encoding also added a noticeable speckle-like appear-

ance to the image. The figure on page86 shows results using hogel-vector encoding.

The 3-D holographic image of a VW Beetle*  car was generated from a polygon data-

*. Historical note: This VW Beetle database was originally measured by hand by Ivan Suther-

land et al.11
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Image of a VW Beetle

Hogel-vector encoded: CR=16 (2.25 MB)

Top: A digitally photographed picture of a 3-D image computed using diffraction-spe-
cific computation.

Bottom: The same image, computed using hogel-vector encoding, CR=16, Nh=1024.
The discrete image points that form the image are blurred, and a slightly speckle-like
appearance is added to the image.

Unencoded (36 MB)

10 mm
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base comprising 1079 polygons. The image was converted into over 10,000 discrete

elements in the image volume using a simple lighting model.

To analyze the effect of hogel-vector encoding on point spread, a series of experiments

were performed using a single imaged point. To make the blurring effect as pro-

nounced as possible, the point was imaged toz=80 mm, the maximum usable depth of

the MIT display. The point was also imaged to other depths, such asz=40 mm,z=20

mm, etc. In each case, the imaged point was generated with a fringe pattern (a single

hololine) computed using hogel-vector encoding. Compression ratios ranged from

CR=1 to CR=64, in powers of two. Typical hogel widths used and their corresponding

number of samples per hogel, are listed in the following table. (Fringe sampling pitch

was 1.7x103 samples/mm.)

To capture the imaged spot’s cross-section, the small 768x494 CCD array was placed

in the beam path within the image volume at the location of an imaged point. The

detected cross-section was digitized and stored. A measure of effective point spread

was calculated for each using the half-energy convention. Many of these cross-sec-

tions and point-spread data are gathered on the succeeding pages.

Image resolution is limited by the blur added using hogel-vector encoding. Point

spread is a function of image depth and of encoding parameters, as shown in the illus-

trations on pages88-90. The succeeding subsection discusses the point spread caused

by hogel-vector encoding.

wh Nh

0.150 mm 256

0.300 mm 512

0.600 mm 1024

1.200 mm 2048
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CR: 1

Hogel-Vector Encoding:

Point Imaged at z=80 mm, wh=0.300 mm (Nh=512)

Unencoded

1 mm

CR: 4

CR: 8

CR: 16

CR: 32

CR: 64

Eff. width: 0.288 mm

Eff. width: 0.304 mm

Eff. width: 0.400 mm

Eff. width: 0.672 mm

Eff. width: 1.152 mm

Eff. width: 2.048 mm

Eff. width: 0.144 mm

This figure shows a series of cross-sections of a point imaged at z=80 mm for a range
of compression ratios. The point blurs (horizontally) as CR increases. For CR of 8 or
lower, the point is still relatively sharp. For compression of CR=16, the point begins to
blur to a width that is easily seen by a human viewer. However, in many cases this
blur is an acceptable trade-off for increased computation speed. Speed of computa-
tion is directly proportional to CR. The CR=16 point, though blurred to 0.672 mm (less
than 5 times the unencoded point width) required 1/16 the computation time. Hogel
width for all of these images was wh=0.300 mm, or Nh=512 samples.
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CR: 1

Hogel-Vector Encoding:

Point imaged at z= 80 mm, wh=0.600 mm (Nh=1024)

Unencoded

1 mm

CR: 4

CR: 8

CR: 16

CR: 32

CR: 64

Eff. width: 0.440 mm

Eff. width: 0.432 mm

Eff. width: 0.464 mm

Eff. width: 0.424 mm

Eff. width: 0.696 mm

Eff. width: 1.168 mm

Eff. width: 0.144 mm

This figure shows a series of cross-sections of a point imaged at z=80 mm. This is
similar to the previous figure, except that the hogel width in this case was wh=0.600
mm, or Nh=1024 samples (twice the previous figure). This figure illustrates that setting
wh=0.600 blurs the point more for low compression ratios. However, for CR=16 and
higher the point was less blurred. Clearly, for a CR=16, the choice of wh=0.600 mm is
better than a hogel width half this size. Although point spread of roughly 0.5 mm limits
image resolution to less than the acuity of the HVS, recall that this is the worst-case
image. Points nearer to the holoplane (i.e., |z|<80 mm) have smaller point spread.
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CR: 1

This figure shows a series of point images focused at z=40 mm. To further illustrate
the effect of choosing the correct hogel width, the point is shown for hogel widths of
0.300 mm and 0.600 mm over the range of compression ratios. The measured effec-
tive widths (in mm) are listed in the lower right corner of each cross-section. Notice
that the point spread is generally less at z=40 mm than for points at z=80 mm.
Although the two values of wh are more similar than in the case of the z=80 mm point,
the choice of wh=0.600 mm gives less point spread at high values of CR.

Unencoded

1 mm

CR: 4

CR: 8

CR: 16

CR: 32

CR: 64

CR: 1

CR: 4

CR: 8

CR: 16

CR: 32

CR: 64

wh=0.600 mm (Nh=1024)wh=0.300 mm (Nh=512)

 0.400

 0.352

 0.344

 0.432

 0.448

 0.608

Hogel-Vector Encoding

Point imaged
at z=40 mm

0.232

 0.224

 0.256

 1.096

 0.344

 0.568
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5.4 Discussion of Point Spread

The blur added when using hogel-vector encoding is the result of several processes:

• spectral sampling blur due to more coarsely sampling hogel spectra;

• aperture effects;

• aberrations in the display;

• quantization and other noise.

The total increase in point spread is equivalent to a reduction in image resolution.

Contribution to blur from spectral sampling is a function of the spectral sampling

width,

, (19)

and is approximated by the following expression:

(20)

where BW is the total spectral bandwidth (in cycles/samples),z is the distance (in mm)

of the point from the hologram plane andp is the fringe sampling pitch in sam-

ples/mm. The expression Nh/CR the number of components in a hogel vector, and the

expression CR/Nh is the fraction of the spectrum represented by each hogel vector

component. As CR increases or as Nh decreases, spectral sampling increases, and each

component carries information about a wider region of the hogel spectrum. Light is

diffracted in a larger range of angles, limiting the achievable image resolution. Here,

then, is the trade-off between bandwidth and image resolution. System bandwidth is

reduced proportionally as the number of symbols per hogel vector decreases, but the

trade-off is the decrease in image resolution.

∆f pBW
CR
Nh

=

blurspectr.sampl. zλpBW
CR
Nh

=
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Aperture effects are simply the results of the finite extent of a hogel (i.e., spatial sam-

pling). For a beam of light diffracted from an aperture of width wh, the width of the

beam at a depth ofz (mm) is

. (21)

Near the holoplane, the aperture effect is approximately constant, making the mini-

mum spot size equal to the hogel width wh. For larger values ofz/wh, spreading due to

diffraction by the aperture becomes significant, adding to blur for deep points.

The spectral sampling blur and aperture blur add geometrically with other sources of

blur. Blur caused by the display was measured for variousz locations in the image vol-

ume. Combining, the model for point spread (minimum spot size) becomes

. (22)

Additional contributions to point spread are for now neglected. Nevertheless, the fol-

lowing subsection demonstrates that this point-spread model matches the experimen-

tally measured image point spread.

5.4.1 Comparison of Theory and Experiment

The figures on pages93-94 compare the point-spread model (Equation22) to the val-

ues measured from points displayed on the MIT display.

bluraperture wh
2 zλ

πwh
( )

2

+ 
 

1 2⁄

=

blurtotal wh
2 zλ

πwh
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2

+ zλpBW
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Nh

( )
2

blurdisplay
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 
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 0.60mm, 1024
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Point Spread:

Hogel Width (mm),
Nh (samples)

Theoretical

Point Spread:
Measured

The top graph is a plot of the measured point width versus compression ratio for a
point imaged at z=80 mm. The bottom graph is a plot of the values derived from the
theoretical model for point spread. Each plotted line is a different hogel width.

Measured and Theoretical Point Spread vs. Compression Ratio:

Point at z=80 mm
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Hogel Width (mm),

Measured and Theoretical Point Spread vs. Compression Ratio:

Point at z=40 mm

Spotsize:

Spotsize:

Nh (samples)

The top graph is a plot of the measured point width versus compression ratio for a
point imaged at z=40 mm. The bottom graph is a plot of the values derived from the
theoretical model for point spread. Each plotted line is a different hogel width.
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Qualitatively, the point spread model fits very well to the measured data. In absolute

terms, there appears to be an additional source of blur for some values of CR. To illus-

trate this deviation more clearly, the following graph compares the measured and theo-

retical point spread values for a point imaged atz=80 mm and a hogel width of

wh=0.600 mm (Nh=1024).

For small values of CR, this additional blur is most likely the result of quantization

noise. These fringes resulted from the superposition of a large number of basis fringes.

For Nh=1024 and CR=1, the number of basis functions to be accumulated is 1024. For

CR=4, this number is still 256. Since the final fringe pattern was quantized to 8 bits

(256 levels), the superposition of over 128 basis fringes means that each is represented

by only 2 levels. For an essentially binary waveform, the signal-to-noise ratio (SNR) is

only 20:1. These experiments were performed for worst-case conditions. In a typical

Measured

Theory
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0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1 4 8 16 32 64

Point Spread vs. Compression Ratio
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image, however, roughly 1/3 or the hogel vector components are zero or nearly zero,

making better use of the 8-bit dynamic range of the display system.

Another likely source of the additional blur is an additional aperture effect caused by

the AOM of the holovideo display. As a hogel traverses the aperture of the AOM in the

form of an acoustic wave, it is clipped at the beginning an end of its path. This clipping

adds to the aperture blur, and is more prominent for larger hogel widths. AOM clip-

ping is most likely the cause of the additional blur found in hogel widths of Nh=1024

and Nh=2048 in the measured point-spread data graphed on pages93-94.

5.4.2 Empirical Selection of System Parameters

The optimal parameters can be selected for a given application. If CR=16 is required,

then the model of point spread can be used to select the proper hogel width. A small

hogel width causes significant blur for largez values due to spectral blur. A large hogel

width keeps spectral blur at bay, but minimum spot size is limited to the hogel width.

The following figure illustrates the variation in spot size as a function of hogel width.

For deep points, a hogel width of 0.600 mm provides a reasonable spot size.
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The following graph is a subset of the measured effective point width for a point

imaged at depths ofz=20 mm,z=40 mm, andz=80 mm. The hogel width that ensures

reasonable spot size for any depth is wh=0.600 mm, i.e., Nh=1024. One additional fea-

ture is that for the parameters of this display, wh=0.600 mm has a roughly constant

spot size for a wide range of depths Note in this graph that the worst case of the 80-

mm deep point can be unacceptably blurred. Depth is the primary struggle when com-

pressing bandwidth. It is relatively easy to achieve high values of CR and good image

fidelity when all points are near the holoplane. Though this may seem like an obvious

statement, it is good to see that all of this work to compress holographic bandwidth (as

opposed to 2-D image bandwidth) is actually necessary.

wh=

wh=

wh=

wh =

Point Imaged at z=80 mmPoint Imaged at z=40 mm

0.592

 0.344

 0.432

 1.224

 0.672

 0.424

 0.648 0.776

Compression Ratio: 16

Hogel
Widths

0.150 mm

0.300 mm

0.600 mm

1.200 mm

1 mm
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5.4.3 Analytical Selection of System Parameters

The model for point spread (Equation22) is used to derive an analytical expression

that relates the various parameters of the holovideo communication system. The

resulting expression is used to analytically select certain parameters – such as hogel

width and compression ratio – given other parameters – such as image resolution and

maximum image depth.

Consider Equation22. The proper selection of hogel width wh ensures that total point

spread is minimized given the other parameters. Let be the maximum allowable

image point spread, and let Z be the maximum image depth. Minimizing point spread

as a function of wh yields:
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(23)

(24)

The expression simplifies under the assumption that the compression ratio (CR) is

somewhat greater than one:

(25)

(26)

given that the hogel width has been chosen as

. (27)

(This assumption is equivalent to setting equal the contributions to point spread from

the aperture and spectral sampling effects. Also, for this analysis, other sources of blur

are treated as negligible.) Note that the parameters of pitch (p) and wavelength (λ)

have been substituted by the expression containing the size of the viewing zone (Θ).

The parameter N=Nh/CR is simply a measure of bandwidth in symbols per hogel.

Equation26 is an analytical expression relating the most important parameters of a

holovideo system, namely the image resolution, the image depth, the bandwidth (N)

and the size of the viewing zone (Θ). To design a holovideo system, an image resolu-

tion is first chosen, setting the parameter. Next, the hogel width is fixed by

Equation27. Finally, minimum bandwidth N and maximum depth Z are adjusted for

optimal performance using Equation26. This analysis shows quite clearly the trade-

off between image depth and required bandwidth. These concepts are explored further

in Section7.3 “Engineering Trade-Off: Bandwidth, Depth, Resolution”on page134.
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5.5 Speed

Using hogel-vector encoding, total computation time consists of the initial direct-

encoding step to produce the hogel-vector array on the Onyx, the hogel-vector decod-

ing step done with the Cheops Splotch Engine, and the time to transfer the encoded

fringes (the hogel-vector array) to the Cheops system. The first step - generation of the

hogel-vector array - was very fast. For simple wireframe objects, typical times were

less than 1.0 s for a CR of 16. The downloading of the hogel-vector array over the

SCSI link is slow, even with a 2.25-MB hogel-vector array (CR=16), the data transfer

required approximately 2.0 s. This time should reduce to a negligible amount with the

future introduction of a high-speed data link.

The decoding step required the greatest amount of computing time. Each fringe sam-

ple in the resulting hogel requires Nh/CR MACs. For compression of 16 times (i.e.,

CR=16), the decoding step requires that for each of 144x512 hogels, 32 basis fringes

of length Nh=512 bytes be multiplied and accumulated to produce a 36-MB fringe.

This is approximately 1.2 GMACS, i.e., over 1 billion multiplies and 1 billion adds.

When implemented on a single Splotch Engine, hogel-vector decoding time was 20 s.

(These timings were worst case, measured using a fully non-zero hogel-vector array.

Typical test images were closer to 9 s owing to their more sparse hogel vectors.) Com-

pared to the (unencoded) diffraction-specific computation speed in the previous chap-

ter, hogel-vector encoding was a factor of 16.0 times faster. This was due to the

reduction by a factor of 1/CR in the number of time-consuming MAC calculations

required for each fringe sample. Since the number of MACs decreases with higher

compression ratios, the speed of hogel-vector decoding increases linearly with CR.

Faster speeds can be achieved by sacrificing image quality for a reduction in informa-

tion content.

As previously noted (Section4.7), the Splotch Engine should be able to achieve a fac-

tor of two speed increase once it has been reconfigured to handle hogel-vector decod-

ing. Also, because the Cheops P2 board can contain three Splotch Engines, decoding
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time can in the future be reduced by two thirds. This potentially brings total computa-

tion time down to about 5s total, including all transfer times, using hogel-vector

encoding implemented on the Onyx/Cheops/Splotch platform. For comparison, a Con-

nection Machine Model 2 with 16 Kprocessors required 21.9s for the computation

task in the previous paragraph (not including the transfer time from the CM2 to

Cheops). In other words, for hogel-vector decoding, a single Cheops P2/Splotch com-

bination provides computing power equivalent of a CM2 - all on one convenient and

portable board.

The following listing summarizes the timings for hogel-vector encoding and decoding.

The first two numbers indicate times for direct-encoding and for decoding. These

times sum to total computing time (excluding transfer time).

• Onyx → Cheops Splotch Engine: 1 s + 20 s = 21 s

• CM2: 1 s + 22 s = 23 s

• SCSI transfer time: add 2 s

5.6 Conclusion

Hogel vectors are a natural choice for a fringe encoding format. Recall the three

important features characterize an information-efficient diffraction-specific hogel

description: (1) the computation of a hogel can proceed using nothing more than a

hogel vector; (2) no two hogels computed from different hogel vectors give rise to the

same viewer stimulus; (3) no two different hogel vectors give rise to the same viewer

stimulus. Hogel vectors increase the amount of entropy per symbol.

Redundancy is inherent in physically useful fringes. The fringe pattern, encoded as the

hogel-vector array, contains reduced redundancy and increased symbol entropy. Thus,

the bandwidth is reduced until the final computation step, decoding.
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Speed is still a problem. Although speed has increased by over an order of magnitude,

the fastest typical time of 9s is still beyond the reach of interactive computing. The

decoding step accounts for most of the total computing time. In the next chapter, a sec-

ond holographic encoding scheme - “fringelet encoding” - is developed specifically to

increase the simplicity and speed of decoding.


