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Appendix B

2Spectral Decomposition of Diffracted Light

This section derives an expression for the relationship between the light diffracted by a

holographic fringe pattern and the fringe spectrum. In keeping with the philosophy of

the diffraction-specific approach, the derivation is backwards: it begins with the

desired image and works backward to the fringe spectrum. First the diffracted light is

decomposed into a summation of plane-wave components16 at the plane of the holo-

gram. Each of these plane waves is diffracted by a particular spatial frequency compo-

nent of the fringe pattern.

The goal of this derivation is to determine what light must be diffracted by a fringe to

generate a specified 3-D imageu(r). To derive the light distribution at the plane of the

hologram (atz=0), first consider the 3-D Fourier transform16 of this image:
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where
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are the spatial and spatial-frequency coordinates. The complementary 3-D inverse

Fourier transform is

(B3)

U k( ) u r( )e i− k r⋅ rd∫
∞−

∞

∫∫=

r x y z+ +≡

k kx ky kz+ +≡

u r( ) κ3 U k( )eik r⋅ kd∫
∞−

∞

∫∫=

κ 2π( ) 1−≡



Lucente: Diffraction-Specific Fringe Computation For Electro-Holography

154

Thus, a 3-D object can be represented as a summation of spatial frequency compo-

nents. Each of these components is a plane wave in space with a propagation vector of

k. Plane waves are the eigenmodes of the free-space propagation of light13. Therefore,

since the image is represented as a summation of plane waves, there is no need to

apply the laws of diffraction to determine the light distribution at a particular plane.

The requirements for propagation are

(B4)

for propagation in the positivez direction. (The free-space wavelength of light isλ.)

Combining the last two equations, the light distribution that must be diffracted by the

fringe at the hologram planez=0 is

(B5)

and

(B6)

where  is the specified image in a plane at a distancez=zO from the hologram

plane and  is the 2-D Fourier transform of the specified image38.

This dissertation generally discusses horizontal-parallax-only (HPO) holograms.

Because a single HPO holograms (hololine) diffracts light only in thex andz direction,

the above expressions can be simplified to eliminate y dependence:
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(B7)

(B8)

(For full-parallax holography, the y dependence can be carried throughout the remain-

ing analysis.) Note that this equation is correct for points at all depths:zp<0, zp>0,

zp=0. In general, image points or elements lie in front of, behind, and on the hologram

plane.

EquationB7 states that a weighted sum of plane waves compose the diffracted distri-

bution. The weighting factors are the Fourier transform ofuO. An additional phase

term is included in each plane-wave component. Notice that this phase factor is not

itself a function ofx. For a givenx location, the superposition (in EquationB7) used to

constructuO uses the same phase factor for each plane-wave component. To see this

more clearly, consider the example of a point image at (xp,zp). The Fourier transform

of a spatial impulse is

(B9)

which gives, at the plane of the hologram,

. (B10)

In this case, the “weights” are uniform, leaving only phase factors in the superposition

of plane waves. The role of the phase term is to add a fixed phase shift for each plane
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wave. It represents a second order component of the diffracted wavefront, namely a

curvature that is a function ofzp.

Consider the role of the phase term in EquationB10. From the point of view of a sin-

gle sample of the fringe (at a singlex location), each spectral component of the dif-

fracted light must include a particular (x-independent) phase shift. And for a given

hogel, each spectral component needs to include such a phase shift. As implied by the

dependence of the phase term onzp, a particular spatial frequency component of the

hogel must include different phase factors for contributions to image elements at dif-

ferent depths. Diffraction-specific computation ignores this phase term, lumping all of

the diffractive function of a particular spatial frequency into a single basis fringe. This

is equivalent to fixing the wavefront curvature to zero independent ofzp and therefore

reduces the image resolution. However, the basis fringes are designed to diffract light

into a range of directions, not just into a single plane wave. Statistically, the effect of

the phase term is small sincekx is not deterministic as is independent ofzp. Further-

more, the phase term becomes less important if spatially incoherent light is used.

EquationsB7 andB8 assume spatially coherent monochromatic illumination, and the

superposition involves summing the complex amplitudes of plane waves. However, in

the case where incoherent light22 is used, the intensities of the plane-wave components

add. Therefore, the phase term is no longer important in the relationship between

fringe spectrum and light diffraction.

So far this analysis has shown that an image can be constructed by diffracting plane

waves. The remaining task is to relate a particular spatial frequency componentf to

each diffracted plane wave. The direction of diffractionkx is a function of the direction

in which light is incident upon the fringe pattern. In optical holography, this means the

illumination beam. In holovideo, it means the effective direction of light incident on

the modulator in the display system. (This parameter was empirically derived by mea-

suring the directions in which light is imaged by fringes consisting of constant spatial

frequencies.) When light incident at the hologram with direction  iski kx
i ky

i ky
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modulated by a fringe with spatial frequency componentf, the boundary condition of

phase-matching15 requires that

(B11)

wherekx is thex-component of the directional vectork of the (first-order) diffracted

light. The point image example (EquationB10) becomes:

(B12)

wherep is the fringe sampling pitch (in samples/mm) and  is the phase term repre-

sented as simply a function off. Finally, EquationB10 shows that a superposition of

spatial frequencies can be used to construct a fringe that diffracts light from a givenx

location to form a point image. Relatingkx to geometric optics,  com-

bined with the phase-matching criterion (EquationB11) gives the useful expression

(B13)

which is essentially the grating equation. This expression was used in most of this the-

sis research for determining which spatial frequency must be used to diffract light in a

particular direction.

As a final note on the linear superposition of fringe patterns, it is assumed in this thesis

research that the modulation technique used by the display system to diffract light is

linear. Amplitude modulation of light allows for linearity since it simply scales the

wavefront by a real scalar between the values of 0.0 and 1.0. Phase modulation is also

approximately linear for a modulation depth of∆φ<π/4. The MIT holovideo display

system using a weak phase modulation, so the condition∆φ<π/4 is satisfied.
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Thus, a 3-D object can be represented as a summation of spatial frequency compo-

nents. Each of these components is a plane wave in space with a propagation vector of

k. Plane waves are the eigenmodes of the free-space propagation of light13. Therefore,

since the image is represented as a summation of plane waves, there is no need to

apply the laws of diffraction to determine the light distribution at a particular plane.

The requirements for propagation are

(B4)

for propagation in the positivez direction. (The free-space wavelength of light isλ.)

Combining the last two equations, the light distribution that must be diffracted by the

fringe at the hologram planez=0 is

(B5)

and

(B6)

where  is the specified image in a plane at a distancez=zO from the hologram

plane and  is the 2-D Fourier transform of the specified image38.

This dissertation generally discusses horizontal-parallax-only (HPO) holograms.

Because a single HPO holograms (hololine) diffracts light only in thex andz direction,

the above expressions can be simplified to eliminate y dependence:
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(B7)

(B8)

(For full-parallax holography, the y dependence can be carried throughout the remain-

ing analysis.) Note that this equation is correct for points at all depths:zp<0, zp>0,

zp=0. In general, image points or elements lie in front of, behind, and on the hologram

plane.

EquationB7 states that a weighted sum of plane waves compose the diffracted distri-

bution. The weighting factors are the Fourier transform ofuO. An additional phase

term is included in each plane-wave component. Notice that this phase factor is not

itself a function ofx. For a givenx location, the superposition (in EquationB7) used to

constructuO uses the same phase factor for each plane-wave component. To see this

more clearly, consider the example of a point image at (xp,zp). The Fourier transform

of a spatial impulse is

(B9)

which gives, at the plane of the hologram,

. (B10)

In this case, the “weights” are uniform, leaving only phase factors in the superposition

of plane waves. The role of the phase term is to add a fixed phase shift for each plane
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wave. It represents a second order component of the diffracted wavefront, namely a

curvature that is a function ofzp.

Consider the role of the phase term in EquationB10. From the point of view of a sin-

gle sample of the fringe (at a singlex location), each spectral component of the dif-

fracted light must include a particular (x-independent) phase shift. And for a given

hogel, each spectral component needs to include such a phase shift. As implied by the

dependence of the phase term onzp, a particular spatial frequency component of the

hogel must include different phase factors for contributions to image elements at dif-

ferent depths. Diffraction-specific computation ignores this phase term, lumping all of

the diffractive function of a particular spatial frequency into a single basis fringe. This

is equivalent to fixing the wavefront curvature to zero independent ofzp and therefore

reduces the image resolution. However, the basis fringes are designed to diffract light

into a range of directions, not just into a single plane wave. Statistically, the effect of

the phase term is small sincekx is not deterministic as is independent ofzp. Further-

more, the phase term becomes less important if spatially incoherent light is used.

EquationsB7 andB8 assume spatially coherent monochromatic illumination, and the

superposition involves summing the complex amplitudes of plane waves. However, in

the case where incoherent light22 is used, the intensities of the plane-wave components

add. Therefore, the phase term is no longer important in the relationship between

fringe spectrum and light diffraction.

So far this analysis has shown that an image can be constructed by diffracting plane

waves. The remaining task is to relate a particular spatial frequency componentf to

each diffracted plane wave. The direction of diffractionkx is a function of the direction

in which light is incident upon the fringe pattern. In optical holography, this means the

illumination beam. In holovideo, it means the effective direction of light incident on

the modulator in the display system. (This parameter was empirically derived by mea-

suring the directions in which light is imaged by fringes consisting of constant spatial

frequencies.) When light incident at the hologram with direction  iski kx
i ky
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modulated by a fringe with spatial frequency componentf, the boundary condition of

phase-matching15 requires that

(B11)

wherekx is thex-component of the directional vectork of the (first-order) diffracted

light. The point image example (EquationB10) becomes:

(B12)
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sented as simply a function off. Finally, EquationB10 shows that a superposition of

spatial frequencies can be used to construct a fringe that diffracts light from a givenx

location to form a point image. Relatingkx to geometric optics,  com-

bined with the phase-matching criterion (EquationB11) gives the useful expression

(B13)

which is essentially the grating equation. This expression was used in most of this the-

sis research for determining which spatial frequency must be used to diffract light in a

particular direction.

As a final note on the linear superposition of fringe patterns, it is assumed in this thesis

research that the modulation technique used by the display system to diffract light is

linear. Amplitude modulation of light allows for linearity since it simply scales the

wavefront by a real scalar between the values of 0.0 and 1.0. Phase modulation is also

approximately linear for a modulation depth of∆φ<π/4. The MIT holovideo display

system using a weak phase modulation, so the condition∆φ<π/4 is satisfied.

kx kx
i 2πf+=

up x( ) e
i2πf x xp−( )

e
iΦ f( )

fd
0

0.5p

∫=

Φ f( )

kx k0 ΘOsin=

f
ΘOsin

λ
kx

i

2π−=



Lucente: Diffraction-Specific Fringe Computation For Electro-Holography

158



Appendix B    Spectral Decomposition of Diffracted Light

153

Appendix B

2Spectral Decomposition of Diffracted Light

This section derives an expression for the relationship between the light diffracted by a

holographic fringe pattern and the fringe spectrum. In keeping with the philosophy of

the diffraction-specific approach, the derivation is backwards: it begins with the

desired image and works backward to the fringe spectrum. First the diffracted light is

decomposed into a summation of plane-wave components16 at the plane of the holo-

gram. Each of these plane waves is diffracted by a particular spatial frequency compo-

nent of the fringe pattern.

The goal of this derivation is to determine what light must be diffracted by a fringe to

generate a specified 3-D imageu(r). To derive the light distribution at the plane of the

hologram (atz=0), first consider the 3-D Fourier transform16 of this image:

(B1)

where

(B2)

are the spatial and spatial-frequency coordinates. The complementary 3-D inverse

Fourier transform is

(B3)

U k( ) u r( )e i− k r⋅ rd∫
∞−

∞

∫∫=

r x y z+ +≡

k kx ky kz+ +≡

u r( ) κ3 U k( )eik r⋅ kd∫
∞−

∞

∫∫=

κ 2π( ) 1−≡



Lucente: Diffraction-Specific Fringe Computation For Electro-Holography

154

Thus, a 3-D object can be represented as a summation of spatial frequency compo-

nents. Each of these components is a plane wave in space with a propagation vector of

k. Plane waves are the eigenmodes of the free-space propagation of light13. Therefore,

since the image is represented as a summation of plane waves, there is no need to

apply the laws of diffraction to determine the light distribution at a particular plane.

The requirements for propagation are

(B4)

for propagation in the positivez direction. (The free-space wavelength of light isλ.)

Combining the last two equations, the light distribution that must be diffracted by the

fringe at the hologram planez=0 is

(B5)

and

(B6)

where  is the specified image in a plane at a distancez=zO from the hologram

plane and  is the 2-D Fourier transform of the specified image38.

This dissertation generally discusses horizontal-parallax-only (HPO) holograms.

Because a single HPO holograms (hololine) diffracts light only in thex andz direction,

the above expressions can be simplified to eliminate y dependence:
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(B7)

(B8)

(For full-parallax holography, the y dependence can be carried throughout the remain-

ing analysis.) Note that this equation is correct for points at all depths:zp<0, zp>0,

zp=0. In general, image points or elements lie in front of, behind, and on the hologram

plane.

EquationB7 states that a weighted sum of plane waves compose the diffracted distri-

bution. The weighting factors are the Fourier transform ofuO. An additional phase

term is included in each plane-wave component. Notice that this phase factor is not

itself a function ofx. For a givenx location, the superposition (in EquationB7) used to

constructuO uses the same phase factor for each plane-wave component. To see this

more clearly, consider the example of a point image at (xp,zp). The Fourier transform

of a spatial impulse is

(B9)

which gives, at the plane of the hologram,

. (B10)

In this case, the “weights” are uniform, leaving only phase factors in the superposition

of plane waves. The role of the phase term is to add a fixed phase shift for each plane
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wave. It represents a second order component of the diffracted wavefront, namely a

curvature that is a function ofzp.

Consider the role of the phase term in EquationB10. From the point of view of a sin-

gle sample of the fringe (at a singlex location), each spectral component of the dif-

fracted light must include a particular (x-independent) phase shift. And for a given

hogel, each spectral component needs to include such a phase shift. As implied by the

dependence of the phase term onzp, a particular spatial frequency component of the

hogel must include different phase factors for contributions to image elements at dif-

ferent depths. Diffraction-specific computation ignores this phase term, lumping all of

the diffractive function of a particular spatial frequency into a single basis fringe. This

is equivalent to fixing the wavefront curvature to zero independent ofzp and therefore

reduces the image resolution. However, the basis fringes are designed to diffract light

into a range of directions, not just into a single plane wave. Statistically, the effect of

the phase term is small sincekx is not deterministic as is independent ofzp. Further-

more, the phase term becomes less important if spatially incoherent light is used.

EquationsB7 andB8 assume spatially coherent monochromatic illumination, and the

superposition involves summing the complex amplitudes of plane waves. However, in

the case where incoherent light22 is used, the intensities of the plane-wave components

add. Therefore, the phase term is no longer important in the relationship between

fringe spectrum and light diffraction.

So far this analysis has shown that an image can be constructed by diffracting plane

waves. The remaining task is to relate a particular spatial frequency componentf to

each diffracted plane wave. The direction of diffractionkx is a function of the direction

in which light is incident upon the fringe pattern. In optical holography, this means the

illumination beam. In holovideo, it means the effective direction of light incident on

the modulator in the display system. (This parameter was empirically derived by mea-

suring the directions in which light is imaged by fringes consisting of constant spatial

frequencies.) When light incident at the hologram with direction  iski kx
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modulated by a fringe with spatial frequency componentf, the boundary condition of

phase-matching15 requires that

(B11)

wherekx is thex-component of the directional vectork of the (first-order) diffracted

light. The point image example (EquationB10) becomes:
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location to form a point image. Relatingkx to geometric optics,  com-

bined with the phase-matching criterion (EquationB11) gives the useful expression
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particular direction.
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linear. Amplitude modulation of light allows for linearity since it simply scales the

wavefront by a real scalar between the values of 0.0 and 1.0. Phase modulation is also
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system using a weak phase modulation, so the condition∆φ<π/4 is satisfied.
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Thus, a 3-D object can be represented as a summation of spatial frequency compo-

nents. Each of these components is a plane wave in space with a propagation vector of

k. Plane waves are the eigenmodes of the free-space propagation of light13. Therefore,

since the image is represented as a summation of plane waves, there is no need to

apply the laws of diffraction to determine the light distribution at a particular plane.

The requirements for propagation are

(B4)

for propagation in the positivez direction. (The free-space wavelength of light isλ.)

Combining the last two equations, the light distribution that must be diffracted by the

fringe at the hologram planez=0 is

(B5)

and

(B6)

where  is the specified image in a plane at a distancez=zO from the hologram

plane and  is the 2-D Fourier transform of the specified image38.

This dissertation generally discusses horizontal-parallax-only (HPO) holograms.

Because a single HPO holograms (hololine) diffracts light only in thex andz direction,

the above expressions can be simplified to eliminate y dependence:
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(For full-parallax holography, the y dependence can be carried throughout the remain-

ing analysis.) Note that this equation is correct for points at all depths:zp<0, zp>0,

zp=0. In general, image points or elements lie in front of, behind, and on the hologram

plane.

EquationB7 states that a weighted sum of plane waves compose the diffracted distri-

bution. The weighting factors are the Fourier transform ofuO. An additional phase

term is included in each plane-wave component. Notice that this phase factor is not

itself a function ofx. For a givenx location, the superposition (in EquationB7) used to

constructuO uses the same phase factor for each plane-wave component. To see this

more clearly, consider the example of a point image at (xp,zp). The Fourier transform

of a spatial impulse is

(B9)

which gives, at the plane of the hologram,

. (B10)

In this case, the “weights” are uniform, leaving only phase factors in the superposition

of plane waves. The role of the phase term is to add a fixed phase shift for each plane

uD x( ) κ UO kx( )e
ixkxe
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wave. It represents a second order component of the diffracted wavefront, namely a

curvature that is a function ofzp.

Consider the role of the phase term in EquationB10. From the point of view of a sin-

gle sample of the fringe (at a singlex location), each spectral component of the dif-

fracted light must include a particular (x-independent) phase shift. And for a given

hogel, each spectral component needs to include such a phase shift. As implied by the

dependence of the phase term onzp, a particular spatial frequency component of the

hogel must include different phase factors for contributions to image elements at dif-

ferent depths. Diffraction-specific computation ignores this phase term, lumping all of

the diffractive function of a particular spatial frequency into a single basis fringe. This

is equivalent to fixing the wavefront curvature to zero independent ofzp and therefore

reduces the image resolution. However, the basis fringes are designed to diffract light

into a range of directions, not just into a single plane wave. Statistically, the effect of

the phase term is small sincekx is not deterministic as is independent ofzp. Further-

more, the phase term becomes less important if spatially incoherent light is used.

EquationsB7 andB8 assume spatially coherent monochromatic illumination, and the

superposition involves summing the complex amplitudes of plane waves. However, in

the case where incoherent light22 is used, the intensities of the plane-wave components

add. Therefore, the phase term is no longer important in the relationship between

fringe spectrum and light diffraction.

So far this analysis has shown that an image can be constructed by diffracting plane

waves. The remaining task is to relate a particular spatial frequency componentf to

each diffracted plane wave. The direction of diffractionkx is a function of the direction

in which light is incident upon the fringe pattern. In optical holography, this means the

illumination beam. In holovideo, it means the effective direction of light incident on

the modulator in the display system. (This parameter was empirically derived by mea-

suring the directions in which light is imaged by fringes consisting of constant spatial

frequencies.) When light incident at the hologram with direction  iski kx
i ky

i ky
i,,( )=
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modulated by a fringe with spatial frequency componentf, the boundary condition of

phase-matching15 requires that

(B11)

wherekx is thex-component of the directional vectork of the (first-order) diffracted

light. The point image example (EquationB10) becomes:

(B12)

wherep is the fringe sampling pitch (in samples/mm) and  is the phase term repre-

sented as simply a function off. Finally, EquationB10 shows that a superposition of

spatial frequencies can be used to construct a fringe that diffracts light from a givenx

location to form a point image. Relatingkx to geometric optics,  com-

bined with the phase-matching criterion (EquationB11) gives the useful expression

(B13)

which is essentially the grating equation. This expression was used in most of this the-

sis research for determining which spatial frequency must be used to diffract light in a

particular direction.

As a final note on the linear superposition of fringe patterns, it is assumed in this thesis

research that the modulation technique used by the display system to diffract light is

linear. Amplitude modulation of light allows for linearity since it simply scales the

wavefront by a real scalar between the values of 0.0 and 1.0. Phase modulation is also

approximately linear for a modulation depth of∆φ<π/4. The MIT holovideo display

system using a weak phase modulation, so the condition∆φ<π/4 is satisfied.
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