by Mark Lucente
Doctoral Thesis Dissertation, MIT Dept. of Electrical Engineering and Computer Science, Sept. 1994.
1 Introduction 13 1.1 Overview of Thesis 16 2 Background 19 2.1 Human Visual System 19 2.1.1 Acuity 19 2.1.2 Pupil Size 20 2.1.3 Depth Cues 20 2.2 Three-Dimensional Displays 21 2.3 Holography 22 2.4 Computational Holography 27 2.5 Holographic Displays 28 2.6 Bandwidth Compression in Holography 31 2.7 Iterative Hologram Computation Methods 34 3 Motivation For Diffraction-Specific Computing 37 3.1 Problems with Interference-Based Fringe Computation 37 3.1.1 Noise 38 3.1.2 Lack of Speed 38 3.1.3 Analytical Image Model Constraint 39 3.1.4 Need for Encoding 40 3.2 Bipolar Intensity 41 3.3 Precomputed Elemental Fringes 42 3.4 Conclusion 44 4 Diffraction-Specific Computation 45 4.1 Recipe for Diffraction-Specific Computation 47 4.2 Discretization of Space and Spatial Frequency: "Hogels" 49 4.2.1 Sampling: Concepts 50 4.2.2 Spatial Sampling 52 4.2.3 Spectral Sampling 53 4.2.4 Introduction of the Hogel 55 4.3 Generation of Hogel Vectors 56 4.3.1 Diffraction Tables 57 4.3.2 Use of 3-D Computer Graphics Rendering 59 4.3.3 Additional Techniques 59 4.4 Converting Hogel Vectors to Hogels 60 4.5 Implementation of Diffraction-Specific Computing 62 4.5.1 Cheops Overview 63 4.5.2 Normalization 64 4.6 Image Generation 65 4.6.1 Photographing of Images 66 4.6.2 Point Images 67 4.6.3 Incoherent Illumination Considerations 69 4.7 Speed 71 4.8 Conclusion 73 5 Hogel-Vector Encoding 77 5.1 The Electro-Holographic Communication System 78 5.1.1 Information Symbols 80 5.1.2 Information Entropy 80 5.2 Description of Hogel-Vector Encoding 82 5.3 Image Generation 85 5.4 Discussion of Point Spread 91 5.4.1 Comparison of Theory and Experiment 92 5.4.2 Empirical Selection of System Parameters 96 5.4.3 Analytical Selection of System Parameters 98 5.5 Speed 100 5.6 Conclusion 101 6 Fringelet Encoding 103 6.1 Fringelet Generation 104 6.2 Fringelet Decoding 105 6.3 Implementation 111 6.4 Image Generation 112 6.5 Discussion of Point Spread 119 6.6 Speed 119 7 Holographic Encoding: Discussion 123 7.1 The Looks and Trends of Encoded Formats 123 7.2 Features of Encoding Schemes 126 7.2.1 Interoperability 127 7.2.2 Extensibility 128 7.2.3 Scalability 129 7.2.4 Manipulability 130 7.2.5 Second-Order Encodability 131 7.2.6 2-D Compatibility 133 7.2.7 Summary of Features 133 7.3 Engineering Trade-Off: Bandwidth, Depth, Resolution 134 7.3.1 Encoding Efficiency: Visual-Bandwidth Holography 136 8 Future Directions 139 8.1 Specialized Fringelet Decoding 139 8.1.1 Digital Fringelet Decoding 139 8.1.2 Analog Electronic Fringelet Decoding 140 8.1.3 Optical Fringelet Decoding 141 8.2 Extension to Full Parallax Holovideo 143 9 Conclusion 145 Appendices: A Glossary of Terms and Abbreviations 151 B Spectral Decomposition of Diffracted Light 153 C Computation of Synthetic Basis Fringes 159 C.1 Method of Iterative Constraints 160 C.2 Simulated Annealing 163 References 169 Acknowledgments 174
Thesis Supervisor: Professor Stephen A. Benton
Title: Allen Professor of Media Technology, Program in Media Arts and Sciences
Perche vede piu certa la cosa l'ochio ne'sogni che colla imaginatione, stando desto? - Leonardo da Vinci